Check out these rapid prototype cost images:
Steven F. Udvar-Hazy Center: P-40 Warhawk with “sharktooth” nose
Image by Chris Devers
See more photos of this, and the Wikipedia article.
Details, quoting from Smithsonian National Air and Space Museum | Curtiss P-40E Warhawk (Kittyhawk IA):
Whether known as the Warhawk, Tomahawk, or Kittyhawk, the Curtiss P-40 proved to be a successful, versatile fighter during the first half of World War II. The shark-mouthed Tomahawks that Gen. Claire Chennault’s "Flying Tigers" flew in China against the Japanese remain among the most popular airplanes of the war. P-40E pilot Lt. Boyd D. Wagner became the first American ace of World War II when he shot down six Japanese aircraft in the Philippines in mid-December 1941.
Curtiss-Wright built this airplane as Model 87-A3 and delivered it to Canada as a Kittyhawk I in 1941. It served until 1946 in No. 111 Squadron, Royal Canadian Air Force. U.S. Air Force personnel at Andrews Air Force Base restored it in 1975 to represent an aircraft of the 75th Fighter Squadron, 23rd Fighter Group, 14th Air Force.
Donated by the Exchange Club in Memory of Kellis Forbes.
Manufacturer:
Curtiss Aircraft Company
Date:
1939
Country of Origin:
United States of America
Dimensions:
Overall: 330 x 970cm, 2686kg, 1140cm (10ft 9 15/16in. x 31ft 9 7/8in., 5921.6lb., 37ft 4 13/16in.)
Materials:
All-metal, semi-monocoque
Physical Description:
Single engine, single seat, fighter aircraft.
Long Description:
Whether it was the Tomahawk, Warhawk, or Kittyhawk, the Curtiss P-40 was a successful and versatile fighter aircraft during the first half of World War II. The shark-mouthed Tomahawks that General Claire Chennault led against the Japanese remain among the most popular airplanes of the war. In the Phillipines, Lt. Boyd D. Wagner became the first American ace of World War II while flying a P-40E when he shot down six Japanese aircraft during mid-December 1941. P-40s were first-line Army Air Corps fighters at the start of the war but they soon gave way to more advanced designs such as the Republic P-47 Thunderbolt and the Lockheed P-38 Lightning (see NASM collection for both aircraft). The P-40 is not ranked among the best overall fighters of the war but it was a rugged, effective design available in large numbers early in the war when America and her allies urgently required them. The P-40 remained in production from 1939 to the end of 1944 and a total of 13, 737 were built.
Design engineer Dr. Donovan R. Berlin layed the foundation for the P-40 in 1935 when he designed the agile, but lightly-armed, P-36 fighter equipped with a radial, air-cooled engine. The Curtiss-Wright Corporation won a production contract for 210 P-36 airplanes in 1937-the largest Army airplane contract awarded since World War I. Worldwide, fighter aircraft designs matured rapidly during the late 1930s and it was soon obvious that the P-36 was no match for newer European designs. High altitude performance in particular became a priceless commodity. Berlin attempted to improve the P-36 by redesigning it in to accommodate a turbo-supercharged Allison V-1710-11 inline, liquid-cooled engine. The new aircraft was designated the XP-37 but proved unpopular with pilots. The turbo-supercharger was not reliable and Berlin had placed the cockpit too far back on the fuselage, restricting the view to the front of the fighter. Nonetheless, when the engine was not giving trouble, the more-streamlined XP-37 was much faster than the P-36.
Curtiss tried again in 1938. Berlin had modified another P-36 with a new Allison V-1710-19 engine. It was designated the XP-40 and first flew on October 14, 1938. The XP-40 looked promising and Curtiss offered it to Army Air Corps leaders who evaluated the airplane at Wright Field, Ohio, in 1939, along with several other fighter proposals. The P-40 won the competition, after some modifications, and Curtiss received an order for 540. At this time, the armament package consisted of two .50 caliber machine guns in the fuselage and four .30 caliber machine guns in the wings.
After production began in March 1940, France ordered 140 P-40s but the British took delivery of these airplanes when Paris surrendered. The British named the aircraft Tomahawks but found they performed poorly in high-altitude combat over northern Europe and relegated them to low-altitude operations in North Africa. The Russians bought more than 2,000 P-40s but details of their operational history remain obscure.
When the United States declared war, P-40s equipped many of the Army Air Corps’s front line fighter units. The plucky fighter eventually saw combat in almost every theater of operations being the most effective in the China-Burma-India (CBI) Theater. Of all the CBI groups that gained the most notoriety of the entire war, and remains to this day synonymous with the P-40, is the American Volunteer Group (AVG) or the Flying Tigers. The unit was organized after the Chinese gave former U. S. Army Air Corps Captain Claire Lee Chennault almost 9 million dollars in 1940 to buy aircraft and recruit pilots to fly against the Japanese. Chennault’s most important support within the Chinese government came from Madam Chiang Kai-shek, a Lt. Colonel in the Chinese Air Force and for a time, the service’s overall commander.
The money from China diverted an order placed by the British Royal Air Force for 100 Curtiss-Wright P-40B Tomahawks but buying airplanes was only one important step in creating a fighting air unit. Trained pilots were needed, and quickly, as tensions across the Pacific escalated. On April 15, 1941, President Franklin D. Roosevelt quietly signed an Executive Order permitting Chennault to recruit directly from the ranks of American military reserve pilots. Within a few months, 350 flyers joined from pursuit (fighter), bomber, and patrol squadrons. In all, about half the pilots in the Flying Tigers came from the U. S. Navy and Marine Corps while the Army Air Corps supplied one-third. Factory test pilots at Bell, Consolidated, and other companies, and commercial airline pilots, filled the remaining slots.
The Flying Tigers flew their first mission on December 20. The unit’s name was derived from the ferocious fangs and teeth painted on the nose of AVG P-40s at either side of the distinctive, large radiator air intake. The idea is said to originate from pictures in a magazine that showed Royal Air Force Tomahawks of No. 112 Squadron, operating in the western desert of North Africa, adorned with fangs and teeth painted around their air intakes. The Flying Tigers were the first real opposition the Japanese military encountered. In less than 7 months of action, AVG pilots destroyed about 115 Japanese aircraft and lost only 11 planes in air-to-air combat. The AVG disbanded on July 4, 1942, and its assets, including a few pilots, became a part of the U. S. Army Air Forces (AAF) 23rd Fighter Group in the newly activated 14th Air Force. Chennault, now a Brigadier General, assumed command of the 14th AF and by war’s end, the 23rd was one of the highest-scoring Army fighter groups.
As wartime experience in the P-40 mounted, Curtiss made many modifications. Engineers added armor plate, better self-sealing fuel tanks, and more powerful engines. They modified the cockpit to improve visibility and changed the armament package to six, wing-mounted, .50 caliber machine guns. The P-40E Kittyhawk was the first model with this gun package and it entered service in time to serve in the AVG. The last model produced in quantity was the P-40N, the lightest P-40 built in quantity, and much faster than previous models. Curtiss built a single P-40Q. It was the fastest P-40 to fly (679 kph/422 mph) but it could not match the performance of the P-47 Thunderbolt and the P-51 Mustang so Curtiss ended development of the P-40 series with this model. In addition to the AAF, many Allied nations bought and flew P-40s including England, France, China, Russia, Australia, New Zealand, Canada, South Africa, and Turkey.
The Smithsonian P-40E did not serve in the U. S. military. Curtiss-Wright built it in Buffalo, New York, as Model 87-A3 and delivered it to Canada as a Kittyhawk IA on March 11, 1941. It served in No. 111 Squadron, Royal Canadian Air Force (RCAF). When the Japanese navy moved to attack Midway, they sent a diversionary battle group to menace the Aleutian Islands. Canada moved No. 111 Squadron to Alaska to help defend the region. After the Japanese threat diminished, the unit returned to Canada and eventually transferred to England without its P-40s. The RCAF declared the NASM Kittyhawk IA surplus on July 27, 1946, and the aircraft eventually returned to the United States. It had several owners before ending up with the Explorer Scouts youth group in Meridian, Mississippi. During the early 1960s, the Smithsonian began searching for a P-40 with a documented history of service in the AVG but found none. In 1964, the Exchange Club in Meridian donated the Kittyhawk IA to the National Aeronautical Collection, in memory of Mr. Kellis Forbes, a local man devoted to Boys Club activities. A U. S. Air Force Reserve crew airlifted the fighter to Andrews Air Force Base, Maryland, on March 13, 1964. Andrews personnel restored the airplane in 1975 and painted it to represent an aircraft of the 75th Fighter Squadron, 23rd Fighter Group, 14th Air Force.
• • •
Quoting from Wikipedia | Curtiss P-40 Warhawk:
The Curtiss P-40 Warhawk was an American single-engine, single-seat, all-metal fighter and ground attack aircraft that first flew in 1938. It was used by the air forces of 28 nations, including those of most Allied powers during World War II, and remained in front line service until the end of the war. It was the third most-produced American fighter, after the P-51 and P-47; by November 1944, when production of the P-40 ceased, 13,738 had been built, all at Curtiss-Wright Corporation‘s main production facility at Buffalo, New York.
The P-40 design was a modification of the previous Curtiss P-36; this reduced development time and enabled a rapid entry into production and operational service.
Warhawk was the name the United States Army Air Corps adopted for all models, making it the official name in the United States for all P-40s. The British Commonwealth and Soviet air forces used the name Tomahawk for models equivalent to the P-40B and P-40C, and the name Kittyhawk for models equivalent to the P-40D and all later variants.
The P-40’s lack of a two-stage supercharger made it inferior to Luftwaffe fighters such as the Messerschmitt Bf 109 or the Focke-Wulf Fw 190 in high-altitude combat and it was rarely used in operations in Northwest Europe. Between 1941 and 1944, however, the P-40 played a critical role with Allied air forces in three major theaters: North Africa, the Southwest Pacific and China. It also had a significant role in the Middle East, Southeast Asia, Eastern Europe, Alaska and Italy. The P-40’s performance at high altitudes was not as critical in those theaters, where it served as an air superiority fighter, bomber escort and fighter bomber.
P-40s first saw combat with the British Commonwealth squadrons of the Desert Air Force (DAF) in the Middle East and North African campaigns, during June 1941. The Royal Air Force‘s No. 112 Squadron was among the first to operate Tomahawks, in North Africa, and the unit was the first to feature the "shark mouth" logo, copying similar markings on some Luftwaffe Messerschmitt Bf 110 twin-engine fighters. [N 1]
Although it gained a post-war reputation as a mediocre design, suitable only for close air support, more recent research including scrutiny of the records of individual Allied squadrons indicates that the P-40 performed surprisingly well as an air superiority fighter, at times suffering severe losses, but also taking a very heavy toll on enemy aircraft. The P-40 offered the additional advantage of low cost, which kept it in production as a ground-attack fighter long after it was obsolete in the air superiority role.
As of 2008, 19 P-40s were airworthy.
• • • • •
See more photos of this, and the Wikipedia article.
Details, quoting from Smithsonian National Air and Space Museum | Space Shuttle Enterprise:
Manufacturer:
Rockwell International Corporation
Country of Origin:
United States of America
Dimensions:
Overall: 57 ft. tall x 122 ft. long x 78 ft. wing span, 150,000 lb.
(1737.36 x 3718.57 x 2377.44cm, 68039.6kg)
Materials:
Aluminum airframe and body with some fiberglass features; payload bay doors are graphite epoxy composite; thermal tiles are simulated (polyurethane foam) except for test samples of actual tiles and thermal blankets.
The first Space Shuttle orbiter, "Enterprise," is a full-scale test vehicle used for flights in the atmosphere and tests on the ground; it is not equipped for spaceflight. Although the airframe and flight control elements are like those of the Shuttles flown in space, this vehicle has no propulsion system and only simulated thermal tiles because these features were not needed for atmospheric and ground tests. "Enterprise" was rolled out at Rockwell International’s assembly facility in Palmdale, California, in 1976. In 1977, it entered service for a nine-month-long approach-and-landing test flight program. Thereafter it was used for vibration tests and fit checks at NASA centers, and it also appeared in the 1983 Paris Air Show and the 1984 World’s Fair in New Orleans. In 1985, NASA transferred "Enterprise" to the Smithsonian Institution’s National Air and Space Museum.
Transferred from National Aeronautics and Space Administration
Marine Week Boston, 2010: Bell-Boeing MV-22B Osprey tilt-rotor aircraft taking off from Boston Common
Image by Chris Devers
Pasted from Wikipedia: Bell-Boeing V-22 Osprey
• • • • •
The Bell-Boeing V-22 Osprey is a multi-mission, military, tiltrotor aircraft with both a vertical takeoff and landing (VTOL), and short takeoff and landing (STOL) capability. It is designed to combine the functionality of a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft.
The V-22 originated from the U.S. Department of Defense Joint-service Vertical take-off/landing Experimental (JVX) aircraft program started in 1981. It was developed jointly by the Bell Helicopter, and Boeing Helicopters team, known as Bell Boeing, which produce the aircraft.[4] The V-22 first flew in 1989, and began years of flight testing and design alterations.
The United States Marine Corps began crew training for the Osprey in 2000, and fielded it in 2007. The Osprey’s other operator, the U.S. Air Force fielded their version of the tiltrotor in 2009. Since entering service with the U.S. Marine Corps and Air Force, the Osprey has been deployed for combat operations in Iraq and Afghanistan.
Contents
• 1 Development
•• 1.1 Early development
•• 1.2 Flight testing and design changes
•• 1.3 Controversy
•• 1.4 Recent development
• 2 Design
• 3 Operational history
•• 3.1 US Marine Corps
•• 3.2 US Air Force
•• 3.3 Potential operators
• 4 Variants
• 5 Operators
• 6 Notable accidents
• 7 Specifications (MV-22B)
• 8 Notable appearances in media
• 9 See also
• 10 References
• 11 External links
Development
Early development
The failure of the Iran hostage rescue mission in 1980 demonstrated to the United States military a need[5] for "a new type of aircraft, that could not only take off and land vertically but also could carry combat troops, and do so at speed."[6] The U.S. Department of Defense began the Joint-service Vertical take-off/landing Experimental (JVX) aircraft program in 1981, under U.S. Army leadership. Later the U.S. Navy/Marine Corps took the lead.[7][8] The JVX combined requirements from the Marine Corps, Air Force, Army and Navy.[9][10] A request for proposals (RFP) was issued in December 1982 for JVX preliminary design work. Interest in the program was expressed by Aérospatiale, Bell Helicopter, Boeing Vertol, Grumman, Lockheed, and Westland. The DoD pushed for contractors to form teams. Bell partnered with Boeing Vertol. The Bell Boeing team submitted a proposal for a enlarged version of the Bell XV-15 prototype on 17 February 1983. This was the only proposal received and a preliminary design contract was awarded on 26 April 1983.[11][12]
The JVX aircraft was designated V-22 Osprey on 15 January 1985; by March that same year the first six prototypes were being produced, and Boeing Vertol was expanded to deal with the project workload.[13][14] Work has been split evenly between Bell and Boeing. Bell Helicopter manufactures and integrates the wing, nacelles, rotors, drive system, tail surfaces, and aft ramp, as well as integrates the Rolls-Royce engines and performs final assembly. Boeing Helicopters manufactures and integrates the fuselage, cockpit, avionics, and flight controls.[4][15] The USMC variant of the Osprey received the MV-22 designation and the Air Force variant received CV-22; reversed from normal procedure to prevent Marine Ospreys from having a conflicting designation with aircraft carriers (CV).[16] Full-scale development of the V-22 tilt-rotor aircraft began in 1986.[2] On 3 May 1986 the Bell-Boeing partnership was awarded a .714 billion contract for V-22 aircraft by the Navy, thus at this point the project had acquisition plans with all four arms of the U.S. military.[17]
The first V-22 was rolled out with significant media attention in May 1988.[18][19] However the project suffered several political blows. Firstly in the same year, the Army left the program, citing a need to focus its budget on more immediate aviation programs.[20] The project also faced considerable dialogue in the Senate, surviving two votes that both could have resulted in cancellation.[21][22] Despite the Senate’s decision, the Department of Defense instructed the Navy not to spend more money on the Osprey.[23] At the same time, the Bush administration sought the cancellation of the project.[23]
Flight testing and design changes
The first of six MV-22 prototypes first flew on 19 March 1989 in the helicopter mode,[24] and on 14 September 1989 as a fixed-wing plane.[25] The third and fourth prototypes successfully completed the Osprey’s first Sea Trials on the USS Wasp in December 1990.[26] However, the fourth and fifth prototypes crashed in 1991-92.[27] Flight tests were resumed in August 1993 after changes were incorporated in the prototypes.[2] From October 1992 until April 1993, Bell and Boeing redesigned the V-22 to reduce empty weight, simplify manufacture and reduce production costs. This redesigned version became the B-model.[28]
Flight testing of four full-scale development V-22s began in early 1997 when the first pre-production V-22 was delivered to the Naval Air Warfare Test Center, Naval Air Station Patuxent River, Maryland. The first EMD flight took place on 5 February 1997. The first of four low rate initial production aircraft, ordered on 28 April 1997, was delivered on 27 May 1999. Osprey number 10 completed the program’s second Sea Trials, this time from the USS Saipan in January 1999.[2] During external load testing in April 1999, Boeing used a V-22 to lift and transport the M777 howitzer.[29] In 2000, Boeing announced that the V-22 would be fitted with a nose-mounted GAU-19 Gatling gun,[30] but the GAU-19 gun was later canceled.[31]
In 2000, there were two further fatal crashes, killing a total of 19 Marines, and the production was again halted while the cause of these crashes was investigated and various parts were redesigned.[32] The V-22 completed its final operational evaluation in June 2005. The evaluation was deemed successful; events included long range deployments, high altitude, desert and shipboard operations. The problems identified in various accidents had been addressed.[33]
Controversy
The V-22’s development process has been long and controversial, partly due to its large cost increases.[34] When the development budget, first planned for .5 billion in 1986, increased to a projected billion in 1988, then-Defense Secretary Dick Cheney tried to zero out its funding. He was eventually overruled by Congress.[32] As of 2008, billion have been spent on the Osprey program and another .2 billion will be required to complete planned production numbers by the end of the program.[2]
The V-22 squadron’s former commander at Marine Corps Air Station New River, Lt. Colonel Odin Lieberman, was relieved of duty in 2001 after allegations that he instructed his unit that they needed to falsify maintenance records to make the plane appear more reliable.[2][35] Three officers were later implicated in the falsification scandal.[34]
The aircraft is incapable of autorotation, and is therefore unable to land safely in helicopter mode if both engines fail. A director of the Pentagon’s testing office in 2005 said that if the Osprey loses power while flying like a helicopter below 1,600 feet (490 m), emergency landings "are not likely to be survivable". But Captain Justin (Moon) McKinney, a V-22 pilot, says that this will not be a problem, "We can turn it into a plane and glide it down, just like a C-130".[31] A complete loss of power would require the failure of both engines, as a drive shaft connects the nacelles through the wing; one engine can power both proprotors.[36] While vortex ring state (VRS) contributed to a deadly V-22 accident, the aircraft is less susceptible to the condition than conventional helicopters and recovers more quickly.[5] The Marines now train new pilots in the recognition of and recovery from VRS and have instituted operational envelope limits and instrumentation to help pilots avoid VRS conditions.[32][37]
It was planned in 2000 to equip all V-22s with a nose-mounted Gatling gun, to provide "the V-22 with a strong defensive firepower capability to greatly increase the aircraft’s survivability in hostile actions."[30] The nose gun project was canceled however, leading to criticism by retired Marine Corps Commandant General James L. Jones, who is not satisfied with the current V-22 armament.[31] A belly-mounted turret was later installed on some of the first V-22s sent to the War in Afghanistan in 2009.[38]
With the first combat deployment of the MV-22 in October 2007, Time Magazine ran an article condemning the aircraft as unsafe, overpriced, and completely inadequate.[31] The Marine Corps, however, responded with the assertion that much of the article’s data were dated, obsolete, inaccurate, and reflected expectations that ran too high for any new field of aircraft.[39]
Recent development
On 28 September 2005, the Pentagon formally approved full-rate production for the V-22.[40] The plan is to boost production from 11 a year to between 24 and 48 a year by 2012. Of the 458 total planned, 360 are for the Marine Corps, 48 for the Navy, and 50 for the Air Force at an average cost of 0 million per aircraft, including development costs.[2] The V-22 had an incremental flyaway cost of million per aircraft in 2007,[3] but the Navy hopes to shave about million off that cost after a five-year production contract starts in 2008.[41]
The Bell-Boeing Joint Project Office in Amarillo, Texas will design a new integrated avionics processor to resolve electronics obsolescence issues and add new network capabilities.[42]
Design
The Osprey is the world’s first production tiltrotor aircraft, with one three-bladed proprotor, turboprop engine, and transmission nacelle mounted on each wingtip. It is classified as a powered lift aircraft by the Federal Aviation Administration.[43] For takeoff and landing, it typically operates as a helicopter with the nacelles vertical (rotors horizontal). Once airborne, the nacelles rotate forward 90° in as little as 12 seconds for horizontal flight, converting the V-22 to a more fuel-efficient, higher-speed turboprop airplane. STOL rolling-takeoff and landing capability is achieved by having the nacelles tilted forward up to 45°. For compact storage and transport, the V-22’s wing rotates to align, front-to-back, with the fuselage. The proprotors can also fold in a sequence taking 90 seconds.[44]
Most Osprey missions will use fixed wing flight 75 percent or more of the time, reducing wear and tear on the aircraft and reducing operational costs.[45] This fixed wing flight is higher than typical helicopter missions allowing longer range line-of-sight communications and so improved command and control.[2] Boeing has stated the V-22 design loses 10% of its vertical lift over a Tiltwing design when operating in helicopter mode because of airflow resistance due to the wings, but that the Tiltrotor design has better short takeoff and landing performance.[46]
The V-22 is equipped with a glass cockpit, which incorporates four Multi-function displays (MFDs) and one shared Central Display Unit (CDU), allowing the pilots to display a variety of images including: digimaps centered or decentered on current position, FLIR imagery, primary flight instruments, navigation (TACAN, VOR, ILS, GPS, INS), and system status. The flight director panel of the Cockpit Management System (CMS) allows for fully-coupled (aka: autopilot) functions which will take the aircraft from forward flight into a 50-foot hover with no pilot interaction other than programming the system.[47] The glass cockpit of the canceled CH-46X was derived from the V-22.[48]
The V-22 is a fly-by-wire aircraft with triple-redundant flight control systems.[49] With the nacelles pointing straight up in conversion mode at 90° the flight computers command the aircraft to fly like a helicopter, with cyclic forces being applied to a conventional swashplate at the rotor hub. With the nacelles in airplane mode (0°) the flaperons, rudder, and elevator fly the aircraft like an airplane. This is a gradual transition and occurs over the rotation range of the nacelles. The lower the nacelles, the greater effect of the airplane-mode control surfaces.[50] The nacelles can rotate past vertical to 97.5° for rearward flight.[51][52]
The Osprey can be armed with one M240 7.62x51mm NATO (.308 in caliber) or M2 .50 in caliber (12.7 mm) machine gun on the loading ramp, that can be fired rearward when the ramp is lowered. A GAU-19 three-barrel .50 in gatling gun mounted below the V-22’s nose has also been studied for future upgrade.[31][53] BAE Systems developed a remotely operated turreted weapons system for the V-22,[54] which was installed on half of the first V-22s deployed to Afghanistan in 2009.[38] The 7.62 mm belly gun turret is remotely operated by a gunner inside the aircraft, who acquires targets with a separate pod using color television and forward looking infrared imagery.
U.S. Naval Air Systems Command is working on upgrades to increase the maximum speed from 250 knots (460 km/h; 290 mph) to 270 knots (500 km/h; 310 mph), increase helicopter mode altitude limit from 10,000 feet (3,000 m) to 12,000 feet (3,700 m) or 14,000 feet (4,300 m), and increase lift performance.[55]
Operational history
US Marine Corps
Marine Corps crew training on the Osprey has been conducted by VMMT-204 since March 2000. On 3 June 2005, the Marine Corps helicopter squadron Marine Medium Helicopter 263 (HMM-263), stood down to begin the process of transitioning to the MV-22 Osprey.[56] On 8 December 2005, Lieutenant General Amos, commander of the II MEF, accepted the delivery of the first fleet of MV-22s, delivered to HMM-263. The unit reactivated on 3 March 2006 as the first MV-22 squadron and was redesignated VMM-263. On 31 August 2006, VMM-162 (the former HMM-162) followed suit. On 23 March 2007, HMM-266 became Marine Medium Tiltrotor Squadron 266 (VMM-266) at Marine Corps Air Station New River, North Carolina.[57]
The Osprey has been replacing existing CH-46 Sea Knight squadrons.[58] The MV-22 reached initial operational capability (IOC) with the U.S. Marine Corps on 13 June 2007.[1] On 10 July 2007 an MV-22 Osprey landed aboard the Royal Navy aircraft carrier, HMS Illustrious in the Atlantic Ocean. This marked the first time a V-22 had landed on any non-U.S. vessel.[59]
On 13 April 2007, the U.S. Marine Corps announced that it would be sending ten V-22 aircraft to Iraq, the Osprey’s first combat deployment. Marine Corps Commandant, General James Conway, indicated that over 150 Marines would accompany the Osprey set for September deployment to Al-Asad Airfield.[60][61] On 17 September 2007, ten MV-22Bs of VMM-263 left for Iraq aboard the USS Wasp. The decision to use a ship rather than use the Osprey’s self-deployment capability was made because of concerns over icing during the North Atlantic portion of the trip, lack of available KC-130s for mid-air refueling, and the availability of the USS Wasp.[62]
The Osprey has provided support in Iraq, racking up some 2,000 flight hours over three months with a mission capable availability rate of 68.1% as of late-January 2008.[63] They are primarily used in Iraq’s western Anbar province for routine cargo and troop movements, and also for riskier "aero-scout" missions. General David Petraeus, the top U.S. military commander in Iraq, used one to fly around Iraq on Christmas Day 2007 to visit troops.[64] Then-presidential candidate Barack Obama also flew in Ospreys during his high profile 2008 tour of Iraq.[65]
The only major problem has been obtaining the necessary spare parts to maintain the aircraft.[66] The V-22 had flown 3,000 sorties totaling 5,200 hours in Iraq as of July 2008.[67] USMC leadership expect to deploy MV-22s to Afghanistan in 2009.[66][68] General George J. Trautman, III praised the increased range of the V-22 over the legacy helicopters in Iraq and said that "it turned his battle space from the size of Texas into the size of Rhode Island."[69]
Naval Air Systems Command has devised a temporary fix for sailors to place portable heat shields under Osprey engines to prevent damage to the decks of some of the Navy’s smaller amphibious ships, but they determined that a long term solution to the problem would require these decks be redesigned with heat resistant deck coatings, passive thermal barriers and changes in ship structure in order to operate V-22s and F-35Bs.[70]
A Government Accountability Office study reported that by January 2009 the Marines had 12 MV-22s operating in Iraq and they managed to successfully complete all assigned missions. The same report found that the V-22 deployments had mission capable rates averaging 57% to 68% and an overall full mission capable rate of only 6%. It also stated that the aircraft had shown weakness in situational awareness, maintenance, shipboard operations and the ability to transport troops and external cargo.[71] That study also concluded that the "deployments confirmed that the V-22’s enhanced speed and range enable personnel and internal cargo to be transported faster and farther than is possible with the legacy helicopters it is replacing".[71]
The MV-22 saw its first offensive combat mission, Operation Cobra’s Anger on 4 December 2009. Ospreys assisted in inserting 1,000 Marines and 150 Afghan troops into the Now Zad Valley of Helmand Province in southern Afghanistan to disrupt communication and supply lines of the Taliban.[38] In January 2010 the MV-22 Osprey is being sent to Haiti as part of Operation Unified Response relief efforts after the earthquake there. This will be the first use the Marine V-22 in a humanitarian mission.[72]
US Air Force
The Air Force’s first operational CV-22 Osprey was delivered to the 58th Special Operations Wing (58th SOW) at Kirtland Air Force Base, New Mexico on 20 March 2006. This and subsequent aircraft will become part of the 58th SOW’s fleet of aircraft used for training pilots and crew members for special operations use.[73] On 16 November 2006, the Air Force officially accepted the CV-22 in a ceremony conducted at Hurlburt Field, Florida.[74]
The US Air Force’s first operational deployment of the Osprey sent four CV-22s to Mali in November 2008 in support of Exercise Flintlock. The CV-22s flew nonstop from Hurlburt Field, Florida with in-flight refueling.[5] AFSOC declared that the 8th Special Operations Squadron reached Initial Operational Capability on 16 March 2009, with six of its planned nine CV-22s operational.[75]
In June 2009, CV-22s of the 8th Special Operations Squadron delivered 43,000 pounds (20,000 kg) of humanitarian supplies to remote villages in Honduras that were not accessible by conventional vehicles.[76] In November 2009, the 8th SO Squadron and its six CV-22s returned from a three-month deployment in Iraq.[77]
The first possible combat loss of an Osprey occurred on 9 April, 2010, as a CV-22 went down near Qalat, Zabul Province, Afghanistan, killing four.[78][79]
Potential operators
In 1999 the V-22 was studied for use in the United Kingdom’s Royal Navy,[80] it has been raised several times as a candidate for the role of Maritime Airborne Surveillance and Control (MASC).[81]
Israel had shown interest in the purchase of MV-22s, but no order was placed.[82][83] Flightglobal reported in late 2009 that Israel has decided to wait for the CH-53K instead.[84]
The V-22 Osprey is a candidate for the Norwegian All Weather Search and Rescue Helicopter (NAWSARH) that is planned to replace the Westland Sea King Mk.43B of the Royal Norwegian Air Force in 2015.[85] The other candidates for the NAWSARH contract of 10-12 helicopters are AgustaWestland AW101 Merlin, Eurocopter EC225, NHIndustries NH90 and Sikorsky S-92.[86]
Bell Boeing has made an unsolicited offer of the V-22 for US Army medical evacuation needs.[87] However the Joint Personnel Recovery Agency issued a report that said that a common helicopter design would be needed for both combat recovery and medical evacuation and that the V-22 would not be suitable for recovery missions because of the difficulty of hoist operations and lack of self-defense capabilities.[88]
The US Navy remains a potential user of the V-22, but its role and mission with the Navy remains unclear. The latest proposal is to replace the C-2 Greyhound with the V-22 in the fleet logistics role. The V-22 would have the advantage of being able to land on and support non-carriers with rapid delivery of supplies and people between the ships of a taskforce or to ships on patrol beyond helicopter range.[89] Loren B. Thompson of the Lexington Institute has suggested V-22s for use in combat search and rescue and Marine One VIP transport, which also need replacement aircraft.[90]
Variants
• V-22A
•• Pre-production full-scale development aircraft used for flight testing. These are unofficially considered A-variants after 1993 redesign.[91]
• HV-22
•• The U.S. Navy considered an HV-22 to provide combat search and rescue, delivery and retrieval of special warfare teams along with fleet logistic support transport. However, it chose the MH-60S for this role in 1992.[92]
• SV-22
•• The proposed anti-submarine warfare Navy variant. The Navy studied the SV-22 in the 1980s to replace S-3 and SH-2 aircraft.[93]
• MV-22B
•• Basic U.S. Marine Corps transport; original requirement for 552 (now 360). The Marine Corps is the lead service in the development of the V-22 Osprey. The Marine Corps variant, the MV-22B, is an assault transport for troops, equipment and supplies, capable of operating from ships or from expeditionary airfields ashore. It is replacing the Marine Corps’ CH-46E[57] and CH-53D.[94]
• CV-22B
•• Air Force variant for the U.S. Special Operations Command (USSOCOM). It will conduct long-range, special operations missions, and is equipped with extra fuel tanks and terrain-following radar.[95][96]
Operators
•• 8th Special Operations Squadron (8 SOS) at Hurlburt Field, Florida
•• 71st Special Operations Squadron (71 SOS) at Kirtland Air Force Base, New Mexico
•• 20th Special Operations Squadron (20 SOS) at Cannon Air Force Base, New Mexico
•• VMM-161
•• VMM-162
•• VMM-261
•• VMM-263
•• VMM-264
•• VMM-266
•• VMM-365
•• VMMT-204 – Training squadron
•• VMX-22 – Marine Tiltrotor Operational Test and Evaluation Squadron
Notable accidents
Main article: Accidents and incidents involving the V-22 Osprey
From 1991 to 2000 there were four significant crashes, and a total of 30 fatalities, during testing.[32] Since becoming operational in 2007, the V-22 has had one possible combat loss due to an unknown cause, no losses due to accidents, and seven other notable, but minor, incidents.
• On 11 June 1991, a mis-wired flight control system led to two minor injuries when the left nacelle struck the ground while the aircraft was hovering 15 feet (4.6 m) in the air, causing it to bounce and catch fire.[97]
• On 20 July 1992, a leaking gearbox led to a fire in the right nacelle, causing the aircraft to drop into the Potomac River in front of an audience of Congressmen and other government officials at Quantico, killing all seven on board and grounding the aircraft for 11 months.[98]
• On 8 April 2000, a V-22 loaded with Marines to simulate a rescue, attempted to land at Marana Northwest Regional Airport in Arizona, stalled when its right rotor entered vortex ring state, rolled over, crashed, and exploded, killing all 19 on board.[37]
• On 11 December 2000, after a catastrophic hydraulic leak and subsequent software instrument failure, a V-22 fell 1,600 feet (490 m) into a forest in Jacksonville, North Carolina, killing all four aboard. This caused the Marine Corps to ground their fleet of eight V-22s, the second grounding that year.[99][100]
Specifications (MV-22B)
Data from Boeing Integrated Defense Systems,[101] Naval Air Systems Command,[102] US Air Force CV-22 fact sheet,[95] Norton,[103] and Bell[104]
General characteristics
• Crew: Four (pilot, copilot and two flight engineers)
• Capacity: 24 troops (seated), 32 troops (floor loaded) or up to 15,000 lb (6,800 kg) of cargo (dual hook)
• Length: 57 ft 4 in (17.5 m)
• Rotor diameter: 38 ft 0 in (11.6 m)
• Wingspan: 45 ft 10 in (14 m)
• Width with rotors: 84 ft 7 in (25.8 m)
• Height: 22 ft 1 in/6.73 m; overall with nacelles vertical (17 ft 11 in/5.5 m; at top of tailfins)
• Disc area: 2,268 ft² (212 m²)
• Wing area: 301.4 ft² (28 m²)
• Empty weight: 33,140 lb (15,032 kg)
• Loaded weight: 47,500 lb (21,500 kg)
• Max takeoff weight: 60,500 lb (27,400 kg)
• Powerplant: 2× Rolls-Royce Allison T406/AE 1107C-Liberty turboshafts, 6,150 hp (4,590 kW) each
Performance
• Maximum speed: 250 knots (460 km/h, 290 mph) at sea level / 305 kn (565 km/h; 351 mph) at 15,000 ft (4,600 m)[105]
• Cruise speed: 241 knots (277 mph, 446 km/h) at sea level
• Range: 879 nmi (1,011 mi, 1,627 km)
• Combat radius: 370 nmi (426 mi, 685 km)
• Ferry range: 1,940 nmi (with auxiliary internal fuel tanks)
• Service ceiling: 26,000 ft (7,925 m)
• Rate of climb: 2,320 ft/min (11.8 m/s)
• Disc loading: 20.9 lb/ft² at 47,500 lb GW (102.23 kg/m²)
• Power/mass: 0.259 hp/lb (427 W/kg)
Armament
• 1× M240 machine gun on ramp, optional
Notable appearances in media
Main article: Aircraft in fiction#V-22 Osprey
See also
• Elizabeth A. Okoreeh-Baah, USMC – first female to pilot a V-22 Osprey
Related development
• Bell XV-15[106]
• Bell/Agusta BA609
• Bell Boeing Quad TiltRotor
Comparable aircraft
Related lists
• List of military aircraft of the United States
• List of VTOL aircraft
References
Bibliography
• Markman, Steve and Bill Holder. "Bell/Boeing V-22 Osprey Tilt-Engine VTOL Transport (U.S.A.)". Straight Up: A History of Vertical Flight. Schiffer Publishing, 2000. ISBN 0-7643-1204-9.
• Norton, Bill. Bell Boeing V-22 Osprey, Tiltrotor Tactical Transport. Midland Publishing, 2004. ISBN 1-85780-165-2.
External links
Wikimedia Commons has media related to: V-22 Osprey
• Official Boeing V-22 site
• Official Bell V-22 site
• V-22 Osprey web, and www.history.navy.mil/planes/v-22.html
• CV-22 fact sheet on USAF site
• www.globalsecurity.org/military/systems/aircraft/v-22.htm
• www.airforce-technology.com/projects/osprey/
• Onward and Upward
• "Flight of the Osprey", US Navy video of V-22 operations
Steven F. Udvar-Hazy Center: Photomontage of SR-71 on the port side
Image by Chris Devers
Posted via email to ☛ HoloChromaCinePhotoRamaScope‽: cdevers.posterous.com/panoramas-of-the-sr-71-blackbird-at…. See the full gallery on Posterous …
• • • • •
See more photos of this, and the Wikipedia article.
Details, quoting from Smithsonian National Air and Space Museum | Lockheed SR-71 Blackbird:
No reconnaissance aircraft in history has operated globally in more hostile airspace or with such complete impunity than the SR-71, the world’s fastest jet-propelled aircraft. The Blackbird’s performance and operational achievements placed it at the pinnacle of aviation technology developments during the Cold War.
This Blackbird accrued about 2,800 hours of flight time during 24 years of active service with the U.S. Air Force. On its last flight, March 6, 1990, Lt. Col. Ed Yielding and Lt. Col. Joseph Vida set a speed record by flying from Los Angeles to Washington, D.C., in 1 hour, 4 minutes, and 20 seconds, averaging 3,418 kilometers (2,124 miles) per hour. At the flight’s conclusion, they landed at Washington-Dulles International Airport and turned the airplane over to the Smithsonian.
Transferred from the United States Air Force.
Manufacturer:
Lockheed Aircraft Corporation
Designer:
Clarence L. "Kelly" Johnson
Date:
1964
Country of Origin:
United States of America
Dimensions:
Overall: 18ft 5 15/16in. x 55ft 7in. x 107ft 5in., 169998.5lb. (5.638m x 16.942m x 32.741m, 77110.8kg)
Other: 18ft 5 15/16in. x 107ft 5in. x 55ft 7in. (5.638m x 32.741m x 16.942m)
Materials:
Titanium
Physical Description:
Twin-engine, two-seat, supersonic strategic reconnaissance aircraft; airframe constructed largley of titanium and its alloys; vertical tail fins are constructed of a composite (laminated plastic-type material) to reduce radar cross-section; Pratt and Whitney J58 (JT11D-20B) turbojet engines feature large inlet shock cones.
Long Description:
No reconnaissance aircraft in history has operated in more hostile airspace or with such complete impunity than the SR-71 Blackbird. It is the fastest aircraft propelled by air-breathing engines. The Blackbird’s performance and operational achievements placed it at the pinnacle of aviation technology developments during the Cold War. The airplane was conceived when tensions with communist Eastern Europe reached levels approaching a full-blown crisis in the mid-1950s. U.S. military commanders desperately needed accurate assessments of Soviet worldwide military deployments, particularly near the Iron Curtain. Lockheed Aircraft Corporation’s subsonic U-2 (see NASM collection) reconnaissance aircraft was an able platform but the U. S. Air Force recognized that this relatively slow aircraft was already vulnerable to Soviet interceptors. They also understood that the rapid development of surface-to-air missile systems could put U-2 pilots at grave risk. The danger proved reality when a U-2 was shot down by a surface to air missile over the Soviet Union in 1960.
Lockheed’s first proposal for a new high speed, high altitude, reconnaissance aircraft, to be capable of avoiding interceptors and missiles, centered on a design propelled by liquid hydrogen. This proved to be impracticable because of considerable fuel consumption. Lockheed then reconfigured the design for conventional fuels. This was feasible and the Central Intelligence Agency (CIA), already flying the Lockheed U-2, issued a production contract for an aircraft designated the A-12. Lockheed’s clandestine ‘Skunk Works’ division (headed by the gifted design engineer Clarence L. "Kelly" Johnson) designed the A-12 to cruise at Mach 3.2 and fly well above 18,288 m (60,000 feet). To meet these challenging requirements, Lockheed engineers overcame many daunting technical challenges. Flying more than three times the speed of sound generates 316° C (600° F) temperatures on external aircraft surfaces, which are enough to melt conventional aluminum airframes. The design team chose to make the jet’s external skin of titanium alloy to which shielded the internal aluminum airframe. Two conventional, but very powerful, afterburning turbine engines propelled this remarkable aircraft. These power plants had to operate across a huge speed envelope in flight, from a takeoff speed of 334 kph (207 mph) to more than 3,540 kph (2,200 mph). To prevent supersonic shock waves from moving inside the engine intake causing flameouts, Johnson’s team had to design a complex air intake and bypass system for the engines.
Skunk Works engineers also optimized the A-12 cross-section design to exhibit a low radar profile. Lockheed hoped to achieve this by carefully shaping the airframe to reflect as little transmitted radar energy (radio waves) as possible, and by application of special paint designed to absorb, rather than reflect, those waves. This treatment became one of the first applications of stealth technology, but it never completely met the design goals.
Test pilot Lou Schalk flew the single-seat A-12 on April 24, 1962, after he became airborne accidentally during high-speed taxi trials. The airplane showed great promise but it needed considerable technical refinement before the CIA could fly the first operational sortie on May 31, 1967 – a surveillance flight over North Vietnam. A-12s, flown by CIA pilots, operated as part of the Air Force’s 1129th Special Activities Squadron under the "Oxcart" program. While Lockheed continued to refine the A-12, the U. S. Air Force ordered an interceptor version of the aircraft designated the YF-12A. The Skunk Works, however, proposed a "specific mission" version configured to conduct post-nuclear strike reconnaissance. This system evolved into the USAF’s familiar SR-71.
Lockheed built fifteen A-12s, including a special two-seat trainer version. Two A-12s were modified to carry a special reconnaissance drone, designated D-21. The modified A-12s were redesignated M-21s. These were designed to take off with the D-21 drone, powered by a Marquart ramjet engine mounted on a pylon between the rudders. The M-21 then hauled the drone aloft and launched it at speeds high enough to ignite the drone’s ramjet motor. Lockheed also built three YF-12As but this type never went into production. Two of the YF-12As crashed during testing. Only one survives and is on display at the USAF Museum in Dayton, Ohio. The aft section of one of the "written off" YF-12As which was later used along with an SR-71A static test airframe to manufacture the sole SR-71C trainer. One SR-71 was lent to NASA and designated YF-12C. Including the SR-71C and two SR-71B pilot trainers, Lockheed constructed thirty-two Blackbirds. The first SR-71 flew on December 22, 1964. Because of extreme operational costs, military strategists decided that the more capable USAF SR-71s should replace the CIA’s A-12s. These were retired in 1968 after only one year of operational missions, mostly over southeast Asia. The Air Force’s 1st Strategic Reconnaissance Squadron (part of the 9th Strategic Reconnaissance Wing) took over the missions, flying the SR-71 beginning in the spring of 1968.
After the Air Force began to operate the SR-71, it acquired the official name Blackbird– for the special black paint that covered the airplane. This paint was formulated to absorb radar signals, to radiate some of the tremendous airframe heat generated by air friction, and to camouflage the aircraft against the dark sky at high altitudes.
Experience gained from the A-12 program convinced the Air Force that flying the SR-71 safely required two crew members, a pilot and a Reconnaissance Systems Officer (RSO). The RSO operated with the wide array of monitoring and defensive systems installed on the airplane. This equipment included a sophisticated Electronic Counter Measures (ECM) system that could jam most acquisition and targeting radar. In addition to an array of advanced, high-resolution cameras, the aircraft could also carry equipment designed to record the strength, frequency, and wavelength of signals emitted by communications and sensor devices such as radar. The SR-71 was designed to fly deep into hostile territory, avoiding interception with its tremendous speed and high altitude. It could operate safely at a maximum speed of Mach 3.3 at an altitude more than sixteen miles, or 25,908 m (85,000 ft), above the earth. The crew had to wear pressure suits similar to those worn by astronauts. These suits were required to protect the crew in the event of sudden cabin pressure loss while at operating altitudes.
To climb and cruise at supersonic speeds, the Blackbird’s Pratt & Whitney J-58 engines were designed to operate continuously in afterburner. While this would appear to dictate high fuel flows, the Blackbird actually achieved its best "gas mileage," in terms of air nautical miles per pound of fuel burned, during the Mach 3+ cruise. A typical Blackbird reconnaissance flight might require several aerial refueling operations from an airborne tanker. Each time the SR-71 refueled, the crew had to descend to the tanker’s altitude, usually about 6,000 m to 9,000 m (20,000 to 30,000 ft), and slow the airplane to subsonic speeds. As velocity decreased, so did frictional heat. This cooling effect caused the aircraft’s skin panels to shrink considerably, and those covering the fuel tanks contracted so much that fuel leaked, forming a distinctive vapor trail as the tanker topped off the Blackbird. As soon as the tanks were filled, the jet’s crew disconnected from the tanker, relit the afterburners, and again climbed to high altitude.
Air Force pilots flew the SR-71 from Kadena AB, Japan, throughout its operational career but other bases hosted Blackbird operations, too. The 9th SRW occasionally deployed from Beale AFB, California, to other locations to carryout operational missions. Cuban missions were flown directly from Beale. The SR-71 did not begin to operate in Europe until 1974, and then only temporarily. In 1982, when the U.S. Air Force based two aircraft at Royal Air Force Base Mildenhall to fly monitoring mission in Eastern Europe.
When the SR-71 became operational, orbiting reconnaissance satellites had already replaced manned aircraft to gather intelligence from sites deep within Soviet territory. Satellites could not cover every geopolitical hotspot so the Blackbird remained a vital tool for global intelligence gathering. On many occasions, pilots and RSOs flying the SR-71 provided information that proved vital in formulating successful U. S. foreign policy. Blackbird crews provided important intelligence about the 1973 Yom Kippur War, the Israeli invasion of Lebanon and its aftermath, and pre- and post-strike imagery of the 1986 raid conducted by American air forces on Libya. In 1987, Kadena-based SR-71 crews flew a number of missions over the Persian Gulf, revealing Iranian Silkworm missile batteries that threatened commercial shipping and American escort vessels.
As the performance of space-based surveillance systems grew, along with the effectiveness of ground-based air defense networks, the Air Force started to lose enthusiasm for the expensive program and the 9th SRW ceased SR-71 operations in January 1990. Despite protests by military leaders, Congress revived the program in 1995. Continued wrangling over operating budgets, however, soon led to final termination. The National Aeronautics and Space Administration retained two SR-71As and the one SR-71B for high-speed research projects and flew these airplanes until 1999.
On March 6, 1990, the service career of one Lockheed SR-71A Blackbird ended with a record-setting flight. This special airplane bore Air Force serial number 64-17972. Lt. Col. Ed Yeilding and his RSO, Lieutenant Colonel Joseph Vida, flew this aircraft from Los Angeles to Washington D.C. in 1 hour, 4 minutes, and 20 seconds, averaging a speed of 3,418 kph (2,124 mph). At the conclusion of the flight, ‘972 landed at Dulles International Airport and taxied into the custody of the Smithsonian’s National Air and Space Museum. At that time, Lt. Col. Vida had logged 1,392.7 hours of flight time in Blackbirds, more than that of any other crewman.
This particular SR-71 was also flown by Tom Alison, a former National Air and Space Museum’s Chief of Collections Management. Flying with Detachment 1 at Kadena Air Force Base, Okinawa, Alison logged more than a dozen ‘972 operational sorties. The aircraft spent twenty-four years in active Air Force service and accrued a total of 2,801.1 hours of flight time.
Wingspan: 55’7"
Length: 107’5"
Height: 18’6"
Weight: 170,000 Lbs
Reference and Further Reading:
Crickmore, Paul F. Lockheed SR-71: The Secret Missions Exposed. Oxford: Osprey Publishing, 1996.
Francillon, Rene J. Lockheed Aircraft Since 1913. Annapolis, Md.: Naval Institute Press, 1987.
Johnson, Clarence L. Kelly: More Than My Share of It All. Washington D.C.: Smithsonian Institution Press, 1985.
Miller, Jay. Lockheed Martin’s Skunk Works. Leicester, U.K.: Midland Counties Publishing Ltd., 1995.
Lockheed SR-71 Blackbird curatorial file, Aeronautics Division, National Air and Space Museum.
DAD, 11-11-01